Skip to main content
Log in

Differences of Heart Rate Variability Between Happiness and Sadness Emotion States: A Pilot Study

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This pilot study investigated the differences of heart rate variability (HRV) indices between two opposite emotion states: happiness and sadness, to reveal the differences of autonomic nervous system activity under different emotional states. Forty-eight healthy volunteers were enrolled for this study. Electrocardiography (ECG) signals were recorded under both emotion states with a random measurement order (first happiness emotion measurement then sadness or reverse). RR interval (RRI) time series were extracted from ECGs and multiple HRV indices, including time-domain (MEAN, SDNN, RMSSD and PNN50), frequency-domain (LFn, HFn and LF/HF) and nonlinear indices (SampEn and FuzzyMEn) were calculated. In addition, the effects of heart rate (HR) and mean artery pressure (MAP) on the aforementioned HRV indices were analyzed for both emotion states. The results showed that experimental order had no significant effect on all HRV indices from both happiness and sadness emotions (all P > 0.05). The key result was that among all nine HRV indices, six indices were identified having significant differences between happiness and sadness emotion states: MEAN (P = 0.028), SDNN (P = 0.002), three frequency-domain indices (all P < 0.0001) and FuzzyMEn (P = 0.047), whereas RMSSD, PNN50 and SampEn had no significant differences between the two emotion states. All indices, except for SampEn, had significant positive correlations (all P < 0.01) for the two emotion states. Four time-domain indices decreased with the increase of HR (all P < 0.01), while frequency-domain and nonlinear indices demonstrated no HR-related changes for each emotional state. In addition, all indices (time-domain, frequency-domain and nonlinear) showed no MAP-related changes. It concluded that HRV indices showed significant differences between happiness and sadness emotion states and the findings could help to better understand the inherent differences of cardiovascular time series between different emotion states in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1175–1191. doi:10.1109/34.954607.

    Article  Google Scholar 

  2. Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221(4616), 1208–1210. doi:10.1126/science.6612338.

    Article  Google Scholar 

  3. Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2012). Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Transactions on Biomedical Engineering, 59(12), 3498–3510. doi:10.1109/tbme.2012.2217495.

    Article  Google Scholar 

  4. Jang, E. H., Park, B. J., Park, M. S., Kim, S. H., & Sohn, J. H. (2015). Analysis of physiological signals for recognition of boredom, pain, and surprise emotions. Journal of Physiological Anthropology, 34(1), 25. doi:10.1186/s40101-015-0063-5.

    Article  Google Scholar 

  5. Wu, C. K., Chung, P. C., & Wang, C. J. (2012). Representative segment-based emotion analysis and classification with automatic respiration signal segmentation. IEEE Transactions on Affective Computing, 3(4), 482–495. doi:10.1109/t-affc.2012.14.

    Article  Google Scholar 

  6. Chang, C. Y., Chang, C. W., Zheng, J. Y., & Chung, P. C. (2013). Physiological emotion analysis using support vector regression. Neurocomputing, 122, 79–87. doi:10.1016/j.neucom.2013.02.041.

    Article  Google Scholar 

  7. Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., & Moss, A. J. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. doi:10.1161/01.cir.93.5.1043.

    Article  Google Scholar 

  8. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. doi:10.1161/01.cir.93.5.1043.

    Article  Google Scholar 

  9. Brown, T. E., Beightol, L. A., Koh, J., & Eckberg, D. L. (1993). Important influence of respiration on human RR interval power spectra is largely ignored. Journal of Applied Physiology, 75(5), 2310–2317.

    Google Scholar 

  10. Furlan, R., Guzzetti, S., Crivellaro, W., Dassi, S., Tinelli, M., Baselli, G., et al. (1990). Continuous 24-h assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation, 81(2), 537–547.

    Article  Google Scholar 

  11. Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical & Biological Engineering & Computing, 42(3), 419–427. doi:10.1007/bf02344719.

    Article  Google Scholar 

  12. Mikuckas, A., Mikuckiene, I., Venckauskas, A., Kazanavicius, E., Lukas, R., & Plauska, I. (2014). Emotion recognition in human computer interaction systems. Elektronika ir Elektrotechnika, 20(10), 51–56. doi:10.5755/j01.eee.20.10.5578.

    Article  Google Scholar 

  13. Valderas, M. T., Bolea, J., Laguna, P., Vallverdu, M., & Bailon, R. (2015). Human emotion recognition using heart rate variability analysis with spectral bands based on respiration. Paper presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 2015-Aug.

  14. Yu, S. N., & Chen, S. F. (2015). Emotion state identification based on heart rate variability and genetic algorithm. Paper presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 2015-Aug.

  15. James, J. G., & Robert, W. L. (1995). Emotion elicitation using films. Cognition and Emotion, 9(1), 87–108.

    Article  Google Scholar 

  16. Liu, C. Y., Zheng, D. C., Zhao, L. N., Li, P., Li, B., Murray, A., et al. (2013). Elastic properties of peripheral arteries in heart failure patients in comparison with normal subjects. The Journal of Physiological Sciences, 63(3), 195–201.

    Article  Google Scholar 

  17. Rioul, O., & Vetterli, M. (1991). Wavelets and signal processing. IEEE Signal Processing Magazine, 8(4), 14–38.

    Article  Google Scholar 

  18. Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32(3), 230–236.

    Article  Google Scholar 

  19. Liu, C. Y., Li, L. P., Zhao, L. N., Zheng, D. C., Li, P., & Liu, C. C. (2012). A combination method of improved impulse rejection filter and template matching for identification of anomalous intervals in electrocardiographic RR sequences. Journal of Medical and Biological Engineering, 32(4), 245–250. doi:10.5405/jmbe.1006.

    Article  Google Scholar 

  20. Singh, J. P., Larson, M. G., Tsuji, H., Evans, J. C., O’Donnell, C. J., & Levy, D. (1998). Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: The framingham heart study. Hypertension, 32(2), 293–297.

    Article  Google Scholar 

  21. Goldberger, J. J., Ahmed, M. W., Parker, M. A., & Kadish, A. H. (1994). Dissociation of heart rate variability from parasympathetic tone. American Journal of Physiology-Heart and Circulatory Physiology, 266(5), H2152–H2157.

    Google Scholar 

  22. Zhang, T., Yang, Z., & Coote, J. H. (2007). Cross-sample entropy statistic as a measure of complexity and regularity of renal sympathetic nerve activity in the rat. Experimental Physiology, 92(4), 659–669.

    Article  Google Scholar 

  23. Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology- Heart and Circulatory Physiology, 278(6), H2039–H2049.

    Google Scholar 

  24. Liu, C. Y., Li, K., Zhao, L. N., Liu, F., Zheng, D. C., Liu, C. C., et al. (2013). Analysis of heart rate variability using fuzzy measure entropy. Computers in Biology and Medicine, 43(2), 100–108.

    Article  Google Scholar 

  25. Liu, C. Y., & Zhao, L. N. Using Fuzzy Measure Entropy to improve the stability of traditional entropy measures. In Computing in Cardiology, Hangzhou, PEOPLES R CHINA, 2011 (Vol. 31, pp. 681–684): IEEE.

  26. Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39.

    Article  Google Scholar 

  27. Kleiger, R. E., Stein, P. K., & Bigger, J. T. (2005). Heart rate variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology, 10(1), 88–101. doi:10.1111/j.1542-474X.2005.10101.x.

    Article  Google Scholar 

  28. Britton, J. C., Taylor, S. F., Berridge, K. C., Mikels, J. A., & Liberzon, I. (2006). Differential subjective and psychophysiological responses to socially and nonsocially generated emotional stimuli. Emotion, 6(1), 150–155. doi:10.1037/1528-3542.6.1.150.

    Article  Google Scholar 

  29. Riganello, F., Cortese, M. D., Arcuri, F., Quintieri, M., & Dolce, G. (2015). How can music influence the autonomic nervous system response in patients with severe disorder of consciousness? Frontiers in Neuroscience, 9, 461. doi:10.3389/fnins.2015.00461.

    Article  Google Scholar 

  30. Huikuri, H. V., Ylitalo, A., Pikkujämsä, S. M., Ikäheimo, M. J., Airaksinen, K. E. J., Rantala, A. O., et al. (1996). Heart rate variability in systemic hypertension. American Journal of Cardiology, 77(12), 1073–1077.

    Article  Google Scholar 

  31. Piccirillo, G., Munizzi, M. R., Fimognari, F. L., & Marigliano, V. (1996). Heart rate variability in hypertensive subjects. International Journal of Cardiology, 53(3), 291–298.

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Natural Science Foundation of Shandong Province in China (Grant 2014ZRE27230), the Key Research and Development Program of Shandong Province (Grant 2016GGE27230) and the National Natural Science Foundation of China (Grants 61671275 and 61201049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licai Yang or Chengyu Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Yang, L., Zhao, L. et al. Differences of Heart Rate Variability Between Happiness and Sadness Emotion States: A Pilot Study. J. Med. Biol. Eng. 37, 527–539 (2017). https://doi.org/10.1007/s40846-017-0238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0238-0

Keywords

Navigation